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The equilibrium properties of an age-structured maodel that includes any arbitrary age-specific weights,
vulnerabilities, fecundities, and natural mortality rates, combined with stock-recruitment relationships,
are derived. The numbers, biomass, and catch at each age can be calculated quite simply. These relation-
ships can be used to construct yield-isopleth diagrams, or to plot equilibrium yield and biomass against
harvest-intensity. We used the results to compute yield isopleths for the Pacific halibut (Hippoglossus
stenolepis) fishery. The analysis can also include a fishing season of any specified length. Relationships
are given to translate the aggregate properties of the age-structured models into several alternative sur-
plus production models.

On a calculé les propriétés d’équilibre d’un modéle structuré selon I'age qui comprend différents poids,
vulnérabilités, fécondités et taux de mortalité naturelle arbitraires en fonction de I'dge combinés a des
relations stock-recruitment. Les nombres, biomasses et prises selon I'dge peuvent étre facilement cal-
culés. Ces relations peuvent servir a I'élaboration de diagrammes des lignes isopléthes du rendement ou
atracer un graphique du rendement d’équilibre et de la biomasse en fonction du niveau d’exploitation. Les
auteurs ont utilisé les résultats pour calculer les lignes isopléthes du rendement de la péche du flétan du
Pacifique (Hippoglossus stenclepis). L'analyse peut aussi porter sur une saison de péche de diverse durée.
On présente des relations pour transformer les propriétés globales des modéles structurés selon V'age en

plusieurs autres modeles de production excédentaire.
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ge-structured models of fish stocks are increasingly

used in the analysis of fisheries management options;

such models follow the general form outlined by Walters

(1969). These models can include age-specific natural
mortality rates, fecundity, weight, and vulnerability to fishing,
as well as stock—recruitment relationships. Normal practice is to
use such models in simulations of alternative fishing policies,
although a literature has developed on the optimal harvesting
strategies for these models: Rorres and Fair (1975), Reed
(1980), Getz (19802, 1980b). Fisheries managers often want to
explore the relationship between harvest intensity and some
aspect of age-specific vulnerability, a method popularized by
the yield-isopleth diagrams of Beverton and Holt (1957).
Beverton and Holt’s work did not include any stock-recruitment
relationships and therefore is often inadequate for stocks when
stock and recruitment are thought to be related.

In this paper we explore the properties of a generalized
age-structured model for generation of yield-isopleth diagrams,
and we present a worked example using data from Pacific
halibut (Hippoglossus stenolepis). The equations we derive are
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closely related to those of Getz (1980a) who analyzed an
age-structured model that differs primarily in the timing of the
breeding season in relation to the harvest season.

In addition we explore a number of properties of the model to
see if biologically meaningful parameters for stock and recruit-

ment can be derived. Finally we see to what extent the properties |

of the generalized age-structured model can be compressed inf¢
simple two-parameter surplus preduction models.

Reconsideration of the Catch Equation

Since the catch equation was introduced over 60yr ago
(Baranov 1918), methods of fish stock assessment have assumed
that fishing mortality and mortality due to causes other than
fishing act simultaneously over the course of the entire year-
However, the fishing season for most stocks has been greatly
reduced since Baranov’s day and it is therefore often assumed
that fishing and natural mortality occur separately (e.g. the
method of Deriso 1980). Both assumptions are extreme. Al
intermediate model, in which fishing takes place over a propor
tion of each year but where natural mortality takes place over the
entire year, is shown below.

If we let our year begin with the onset of fishing and if the
season lasts until time 7(0 << 7 <C 1), then it is easily shown tha!
the catch C and abundance at the end of the fishing season N, ar®
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TaBLE 1. Effect of adjusting the catch equation for length of
the fishing season on calculations of abundance at end of fishing
season. The abundance at the end of the year is computed as a
proportion of abundance at the beginning of the year for several
annual harvest rates. A natural mortality rate of M = 0.2 was
used.

Length of fishing season (mo)

Catch
rate 1 3 6 9 i2
0.1 0.80 0.78 0.76 0.74 0.73
0.3 0.67 0.64 .60 0.58 0.55
0.5 0.48 0.46 .42 0.40 0.37
0.7 0.29 0.27 0.24 0.22 0.20
0.9 0.09 0.08 0.06 0.05 0.04
given by
1 C= NO—-—F—(I — e-‘r(F+M))
F+M

(2) N‘r — NO e—T(F‘l'M)

where Ny is the abundance at the beginning of the year and F and

. M are instantaneous rates of fishing and natural m'ortality (in

units of year™!). The abundance at the end of the year N, is
simply

(3) Ny = Noe 0F ),

Table 1 illustrates how calculations of abundance depend on
the length of the fishing season. For short seasons with moderate
catch rates, estimates of abundance at the end of the year,
calculated assuming that fishing occurs throughout the year,
will be about 90% of the true value. By comparing across rows
of Table 1 we can see how much the length of the fishing season
affects the total loss from the population. For short seasons with
high catch rates, estimated stock size can be as low as 50% of the
true value. Adjusting the catch equation for length of season will
thus afford an increase in precision for only a slight increase in

L computational complexity.

Equilibrium Formula for Age-Structured Models

Formulae are here derived for computing values of several
Model variables at the equilibrium reached when a constant
harvest rate is applied indefinitely. Data required include
age-specific parameters, such as weight, relative vulnerability

| tharvesting, and reproductive potential (either egg production

or whatever may be chosen to represent “stock” in the stock and
Ecruitment model), and estimates of the stock—recruitment
model parameters. Variables to be determined are total biomass
before and after fishing, recruitment, total reproductive poten-
tial, and the catch. Getz (1980a) provided similar equations
Except that he assumed that the spawning population was meas-
Ured after harvest and we assume that spawning oceurs before
hﬂr_Vest.

The equations depend on the annual order of events. The year
Starts with recruitment, followed by harvesting. Natural mortal-
1ty occurs throughout the year. Reproductive potential is assumed
Wbe determined by abundance after recruitment but before the

Unset of fishing.

Let N; be the number of fish at age 7 after recruitment but
before harvesting. At equilibrium:
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@4 N=R., i=r
i—1
= R. cxp[—z (TFVJ-+MJ-)] ,
= i=r+1,r+2, ...n

where R, = equilibrium recruitment in numbers of fish, V; =
the relative vulnerability to harvesting at age j, M; = the rate of
natural mortality at age f (although Af; will usually be assumed
constant over ages), r = the age at recruitment, and n = the
oldest age accounted for in the model.

The tota! equilibrium biomass after recruitment but before
fishing is B., given by substituting from 4:

() Bo=2 WiN:
= Ro ()
where

n i—1
Q=W+ 2 1Wicxp[-z (TFlfj+Mj)]
i=r+ j=r

and W; = weight at age i.
Total reproductive potential E., is

© E.=2 fib

=R.(:
where

n i—1

orere 5 g5

=r+l r
If reproductive potential is represented by egg production, then
fi = fecundity at age i adjusted for the sex ratio. If reproductive
potential is simply proportional to biomass, then f; = W;, and if
reproductive potential is numbers of fish, then f; = 1.

The biomass of catch is given by

7 Cop = i Wi N, FV: (1 = exp [—7(FV; + M))])
M Co= 2 WilNigr P i+ M,
=RmQ3
where
FV,
=W,——— (1 - - +
03 = W, g (1~ exp [TV, + M)
n FV!
ot (1 - — -+ M.
2, Wiy (e [PV MDD

L
X (exp [-— Z (TF‘G+Mj)]) .
Jj=r

Total equilibrium biomass after fishing B, is given by

®) Bs =2 WN
= R0y
where

0a = W, exp [—7(FV, + M,)]
+ S Wexp [—T(Fw + M)

i=r+1 i1
i—
_ er (TFV_;+ M})]

Note that if breeding takes place after the fishing season, then

1767



N/ should be used in equation 6 instead of N;. Substituting f;
for W, in equation 8 would provide the reproductive potential
appropriate for postharvest spawning.

Equations 5-8 have been derived in terms of equilibrium
recruitment. It remains to derive an expression for R, in terms of
stock and recruitment parameters. If the Ricker (1954) model is
used, we have

(9) Ry=aE,e P&

where o and 3 are model parameters. Substituting equation 6
into equation 9, we obtain

_In(a@)
(10) R.= .
TBQ:
If the Beverton and Holt {(1957) model is used, we have
Ex
11}) Ry=——+—.
D R~ GE+ B
Substituting equation 6 into 11, we get
_ -8B
(12) R.= .
aQs

Finally, substituting either equation 10 or 12 into equations
5-8, we obtain the equilibrium values in terms of the harvest
rate, length of the season, the age-specific parameters, and the
stock and recruitment parameters.

Stock-Recruitment Parameters for Age-Structured
Models

For age-structured models, the biological interpretation of the
parameters a and f is not immediately obvious and can be quite
difficult to interpret. Fortunately, « and 3 can be combined with
the other parameters of the age-structured model to calculate
more biologically meaningful quantities, There are several
possibilities, but we suggest the use of (1) the unfished equilib-
rium biomass and (2) the rate of biomass recruitment at half the
unfished equilibrium biomass. These two quantitics, when taken
together, are equivalent to « and (3, as shown in the next two
paragraphs.

The unfished equilibrium biomass can be determined from
equation 5 with F = 0. The rate of recruitment 8 at proportion p
of the equilibrium biomass B, (assuming the same age distribu-
tion) is given for the Ricker model by equation 13 (details of the
derivation are given in the appendix):

w @ @)™
13y 8=W,—
(13 o
And for the Beverton Holt model:
1
a4 o=w2

Q1 (pQ2+ (1= p)B)’

For modeling purposes, it would be convenient if we could
set « and (3 from values of B, and 8. For the Ricker model, it can
be shown (details in appendix) that

(Q B) 1/ (1—p)
QZ r
and

@0 ) 1
i ——1
16 @ ( (I—P)Bx

(15)
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while for the Beverton and Holt model:

Q1 —_I_(W"_- ):‘
o e= - (g5
and

_ QZ (Wr )
18) B= -p).
a8 p=1=-55 7

Simplification to Surplus Production Models

It is increasingly recognized that complex age-structured
models can be compressed into a much more manageable form
with little sacrifice in accuracy. Deriso (1980) presented the
most elegant reduced form, compressed a generalized age-
structured model into a delay-difference equation with seven
parameters. Hilborn (1979), Ludwig and Hilborn {1983), and
Ludwig and Walters (1985) have shown that simple two-
parameter surplus production models can be used as surrogates
for the more complex age-structured models. Hilborn (1979)
used a discrete form of the standard Schaefer model:

B
(19) B, =B, + rB,(l - -E‘) -,

where B, | | is the biomass at time ¢ + 1, B, is the biomass at time
t, r is the rate of growth of biomass as B approaches zero, k is
the unfished equilibrium stock size, and C, is the catch at time .

Ludwig and Hilborn (1983) and Ludwig and Walters (1985)
have used Ricker’s recruitment model as a surplus production
model of the form

(20) B,y = B, eI~ 8./8)

where e is the rate of growth of biomass as B approaches zero
and B is the unfished stock size.

There are several ways to compress the behaviour of the
age-structured model into the simple surplus production model.
We suggest the following.

The properties of the Schaefer model are

B.=k

(21) C*=—
k

B* = _

2

where B.. is the unfished stock size, C* is the maximum sustain-
able yield, and B* is the biomass at maximum sustainable yield.
Parameter B, can be derived from the age-structured model by
setting F = 0.0. Parameters C* and B* can both be found by &
numerical search over values of F. Once B.., C*, and B* are
determined, the values of r and & can be computed using (21).

The parameters of the Ricker equation can be calculated in
several ways. The simplest is to use the following equation from
Ricker (1975):

(22) o= u* —In(l — u*)

where u* is the annual harvest rate C*/B*. The B of the Ricker
model is the unfished stock size and therefore B,.

Equilibrium Properties of Pacific Halibut

Age-specific population parameters for the Pacific halibut
fishery (R. B. Deriso, International Pacific Halibut Commis-
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TaBLE 2. Weight, vulnerability, and reproductive poten-
tial schedules for Pacific halibut. Reproductive potential is
the weight times the percent of females who reproduce at
that age. Natural mortality rate {M) was assumed to be 0.2
for all ages. '

Average Relative Reproductive

Age weight (kg)  vulnerability potential

8 8.0 0.18 1.0

9 10.3 0.32 2.6
10 12.7 0.47 4.8
11 158 0.59 7.9
12 195 ° 0.76 12.2
13 22.7 0.81 17.1
14 26.4 0.92 23.1
15 28.7 1.00 28.7
16 30.8 1.06- 30.8
17 33.8 1.00 33.8
18 413 1.00 41.3
19 45.7 1.00 45.7
20 447 1.00 44.7

~ sion, University of Washington, Seattle, WA, pers. comm.) are
listed in Table 2. Recruitment to the gear occurs at age 8, and the
oldest age in the model is 20. Natural mortality is assumed
constant over all ages, with M = 0.2. The length of the fishing
season is currently about 4 wk, so T = 4/52 = 0.0769,

Reproductive potential for the stock and recruitment model
was defined to be the sum over ages 8~20 of a fraction of the
total biomass at each age, where the fraction begins at 1/8 for
age-8, and increases by 1/8 for each age from age 9 to age 14,
and is equal to unity for ages 15-20. Recruitment in thousands
of fish is determined from a Ricker model with the parameters
o = (0,187 and 3 = 0.016.

The optimal harvestrate is not available in closed form, so the
. equilibrium properties were calculated numerically by varying
Ebetween 0 and 22 in increments of 0.25. The apparently high
values of F are a result of the very intense but short fishing
season. The unfished stock size (B,) is 226 KMT, and the
maximum sustainable harvest (C*) is 35 KMT, which takes
place when F* = 8.0. The biomass at optimum harvest rate (B*)
is 147 KMT, and the annual harvest rate at optimum (*) is
0.24,

The alternative stock—recruitment parameters were also cal-
- culated. The unfished equilibrium biomass is 226 KMT, and the
| rate of recruitment at half the unfished equilibrium biomass (8)
is 0.30. The latter value seems reasonable for a long-lived
species. For short-lived, highly fecund species, we would
| expect 0 to be larger.

Figure 1 shows the yield-isopleth diagram for the fishery,
- Wwhere the x-axis represents the annual catch divided by the
| preharvest biomass (harvest rate), and the y-axis represents the
first year of vulnerability. The vulnerability of all older ages is
unchanged. While this is somewhat unrealistic, it does let us
¢xamine the potential increase in yield that could be obtained by
increasing the age at first capture. Although this is not a
| Vield-per-recruit diagram, its general shape is quite similar.

Figure 2 shows the equilibrium stock size and the equilibrium
Yield versus harvest rate. This curve conforms to the general
shapes we have come to expect from surplus production models.

* Given the relationship between the Schaefer parameters r and

kand the three numbers available from the age-structured model
| (B, B*, C*), there are four possible combinations of r and &
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FiG. 2. Equilibrium stock size and yield versus harvest rate for

Pacific halibut. Annual harvest rate is the catch divided by the pre-
harvest biomass.

that can be calculated. These are shown in Table 3, along with
the parameters that can be calculated from r and % using the
Schaefer model. In each set, some of the biologically meaning-
ful parameters (B, B* C% and u*) are equal to those of the
“real” age-structured model, and some of the parameters are not
the same. The best approach is the vpper right-hand set, in
which k is estimated by multiplying the optimum stock size of
the age-structured model by 2, and r is obtained by multiplying
the ratio of catch to biomass at optimum by 2, '
While there may appear to be some circularity in these
calculations, whenever the use of the surplus production model
is desired, the best way to calculate parameters may be to use the
age-structured model. The surplus production model would be
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TABLE 3. Optimal equilibrium properties of Schaefer
model parameters using parameters derived from equilib-
rium properties of an age-structured model. The Schaefer
parameters » and k can each be estimated in two different
ways from B, C¥, and B*.

k=B,=227  k=2B*=29
B =226 B.. = 296
o C* =27 C* =35
=S T048 o B* = 147
= 0.24 w* = 0.24
B. = 226 B. = 296
_dcv C* =35 C* = 46
r=pg,=06  pe=ii3 B¥ = 147
W =031 Wk = 0.31

used for optimization, simulation, or gameing. Therefore we
want to have our compressed surplus production model behave
as much like the full age-structured model as possible. The
upper right hand set in Table 3 is probably preferred because we
would like our compressed model to have the same optimum
stock size, sustainable yield, and optimum harvest rate as the
full age-structured model,

Using equation 22 to estimate the parameters of a Ricker-type
surplus production model produces B, = 226, C* = 33, B* =
105, and w* = 0.24. In this case the optimum stock size and
yield are underestimated.

The utility of any of these surplus production representations
of the full age-structured model will depend on the exact use
of the compressed model, and the choice of which parameter
estimation method to use is left to potential users. Potential
users arec reminded that many other methods can be used, in-
cluding a Beverton—Holt stock-recruitment curve as a surplus
production model, or the Pella and Tomlinson (1969) surplus
production model,

Discussion

We have presented a simple method for summarizing age-
structured data for harvested populations. Weight and fecundity
schedules are usually easily obtained from data collected in
association with age sampling. If a time series of age composi-
tion of catch is available, the remaining data required can be
determined by the method of Fournier and Archibald (1982), or
by cohort analysis (Pope 1972) used in conjunction with a
method for the estimation of stock-recruitment parameters
(Ludwig and Walters 1981).

Model dynamics will in general depend largely on the rela-
tionship between the fecundity and vulnerability schedules.
Density-dependent growth and species interactions are the two
biological factors not included in this analysis that may be
significant. Nevertheless, useful statistics characterizing the
population are the equilibrium properties and alternative stock—
recruitment parameters as described above. The equations are
simple enough to solve on a programmable calculator, and yet
enable one to analyze yields for different vulnerability sched-
ules and fishing intensities.
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Appendix: Derivation of Stock—Recruit Parameters
for Age-Structured Models

For the Ricker stock—recruitment curve (equation 9), the rate
of biomass recruitment at proportion p of equilibrium biomass,
assuming the same harvest rate F, is given by
_ W.Ry

PBa
where Ry = recruitment in numbers of fish at proportion p of the
unfished biomass. It remains to express Ryinterms of o, B, and
p and By in terms of o and B.

To begin, substituting equation 10 into equation 5, we obtain
_ Qi gy

o B
Now, rewriting Ry, we have
(A3) Ra = aEee_BES

where Ey = reproductive potential at proportion p of the equi-
librium biomass. Assuming the same age distribution as for By
then

(A1) o

(A.2) B

(Ad) Ey= 2} fipN;
= pF,. o
Substituting equation 10 into equation 6 and then using the
result in equation A.4 gives
In (o ;) .

(A5) Ey=p B
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Now, rewriting equation A.3 using equation A.5, we obtain

. o -

(A.6) Ry= B pln{oQ){a@s) "

Finally, substituting equation A.2 and equation A.§ into our
expression for 8, we derive

(aQ)'?
o

As derived above, equation A.2 and equation A.7 are valid for
any value of the harvest rate, For 8. and 0 to refer specifically to
the unfished equilibrium biomass and rate of recruitment at
proportion p of the unfished equilibrium biomass, respectively,
we need only write ¢ and Q, with F = 0.

Following the same line of argument, for the Beverton—Holt
curve {equation 11), we have

_ 01 (2:-B)
02 o

AT =W,

(A.8) B.
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and

(A.9) Eo

QE9+[‘3
(02— B) 1
o  pO,+(1-pB’

Finally, substituting equation A.8 and eqguation A.9 into our
expression for 0, we obtain

WrQZ . 1
01 pO+(1-p)B~

To derive a and B in terms of 6 and B.. for the Ricker curve,
rewriting equation A.7 gives a directly (equation 15). To derive
B, simply solve the equation obtained when equation 15 is
substituted into equation A.2.

Similarly, to derive o and B in terms of 6 and B, for the
Beverton—Holt curve, first solve equation A.10 for . Then to
derive «, solve the equation obtained when equation 18 is
substituted into equation A.8.

T

Ra=

=P

(A.10) 6=
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